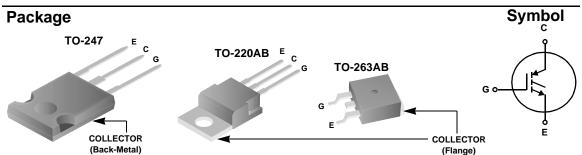
August 2003

SEMICONDUCTOR®

FGH30N6S2 / FGP30N6S2 / FGB30N6S2

600V, SMPS II Series N-Channel IGBT

General Description


The FGH30N6S2, FGP30N6S2, and FGB30N6S2 are Low Gate Charge, Low Plateau Voltage SMPS II IGBTs combining the fast switching speed of the SMPS IGBTs along with lower gate charge and plateau voltage and avalanche capability (UIS). These LGC devices shorten delay times, and reduce the power requirement of the gate drive. These devices are ideally suited for high voltage switched mode power supply applications where low conduction loss, fast switching times and UIS capability are essential. SMPS II LGC devices have been specially designed for:

- Power Factor Correction (PFC) circuits
- Full bridge topologies
- Half bridge topologies
- Push-Pull circuits
- Uninterruptible power supplies
- Zero voltage and zero current switching circuits

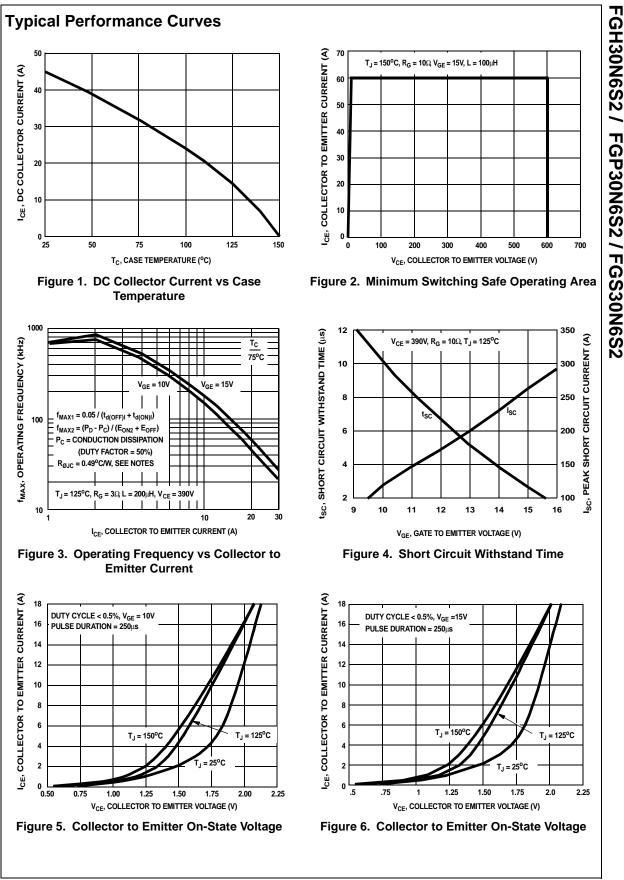
Formerly Developmental Type TA49367.

Features

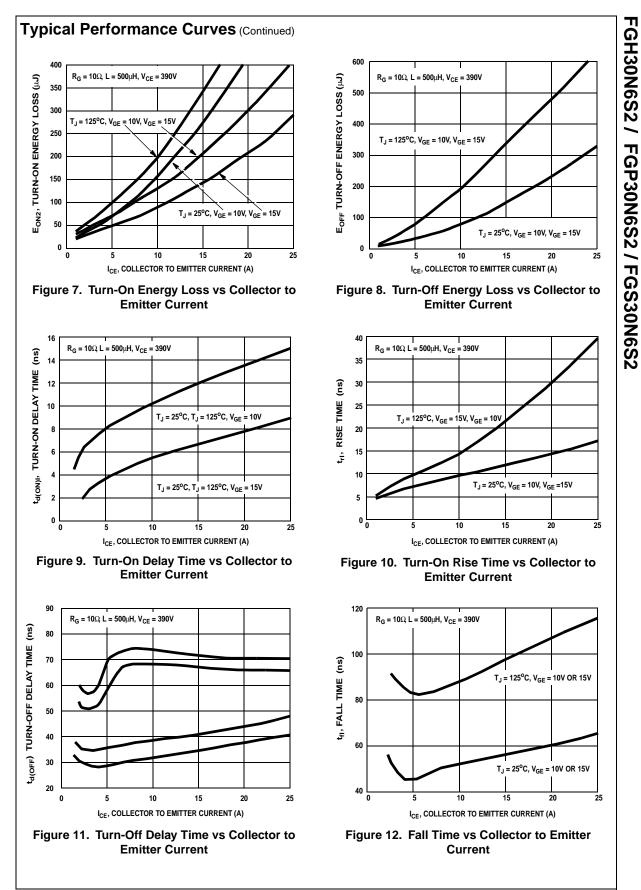
- 100kHz Operation at 390V, 14A
- 200kHZ Operation at 390V, 9A
- 600V Switching SOA Capability
- Typical Fall Time. 90ns at TJ = 125°C
- Low Gate Charge $\dots \dots 23nC$ at V_{GE} = 15V
- Low Plateau Voltage6.5V Typical
- Low Conduction Loss

Device Maximum Ratings T_C= 25°C unless otherwise noted

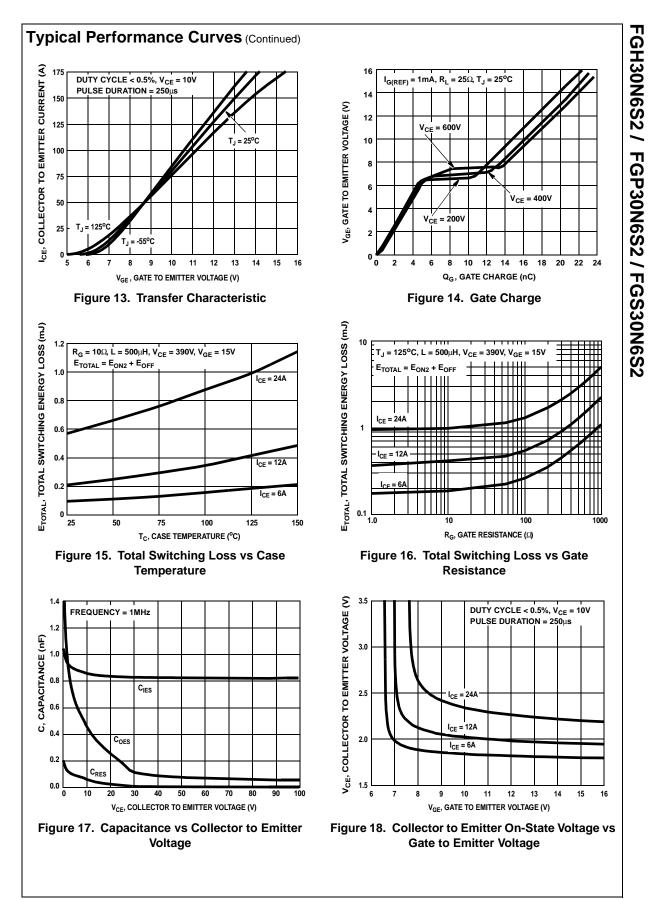
Symbol	Parameter	Ratings	Units
BV _{CES}	Collector to Emitter Breakdown Voltage	600	V
I _{C25}	Collector Current Continuous, T _C = 25°C	45	Α
I _{C110}	Collector Current Continuous, T _C = 110°C	20	Α
I _{CM}	Collector Current Pulsed (Note 1)	108	Α
V _{GES}	Gate to Emitter Voltage Continuous	±20	V
V _{GEM}	Gate to Emitter Voltage Pulsed	±30	V
SSOA	Switching Safe Operating Area at $T_J = 150^{\circ}$ C, Figure 2	60A at 600V	
E _{AS}	Pulsed Avalanche Energy, I _{CE} = 20A, L = 1.3mH, V _{DD} = 50V	150	mJ
PD			W
	Power Dissipation Derating T _C > 25°C	1.33	W/°C
TJ	Operating Junction Temperature Range	-55 to 150	°C
T _{STG}	Storage Junction Temperature Range	-55 to 150	°C
operation o DTE:	sses above those listed in "Device Maximum Ratings" may cause permanent damage to t f the device at these or any other conditions above those indicated in the operational secti imited by maximum junction temperature.		

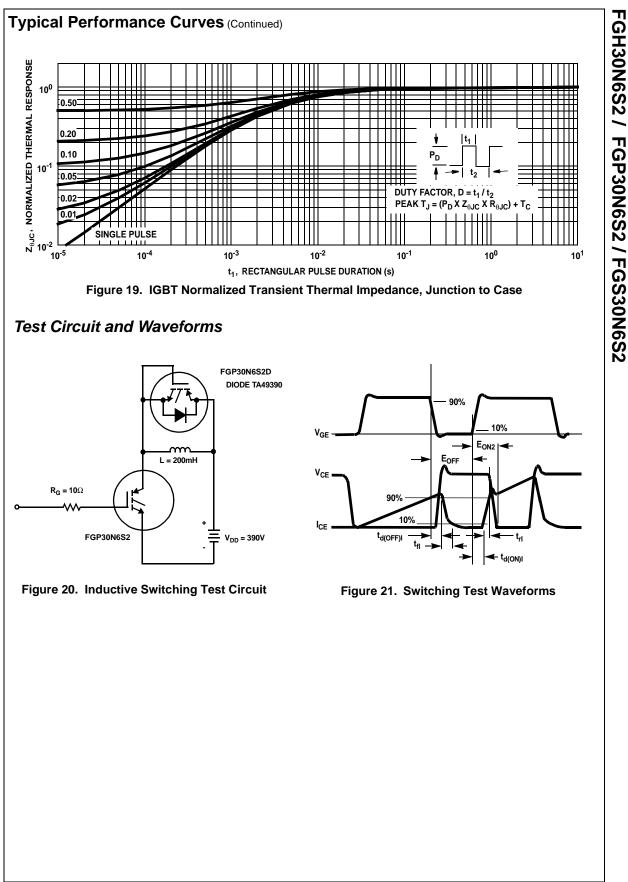

Device M	larking	Device	Package	Reel Size	Тар	e Width	Qua	antity
		FGH30N6S2	TO-247	Tube	N/A		30 Units	
30N6S2 FGP30N6S2		O-220AB Tube		N/A		50 Units		
30N6S2 FGB30N6S2		TO-263AB Tube		N/A		50 Units		
30N6	S2	FGB30N6S2T T	O-263AB	330mm	2	4mm	800	Units
	al Chara	acteristics $T_J = 25^{\circ}C$ unl						
Symbol		Parameter	Test Co	nditions	Min	Тур	Max	Units
ff State	Characte	ristics						
BV _{CES}	Collector	to Emitter Breakdown Voltage	I _C = 250μA, V	_{GE} = 0	600	-	-	V
BV _{ECS}		Collector Breakdown Voltage	I _C = -10mA, V	-	20	-	-	V
I _{CES}		to Emitter Leakage Current	$V_{CE} = 600V$ $T_J = 25^{\circ}C$		-	-	100	μA
020		-		T _J = 125°C	-	-	2	mA
I _{GES}	Gate to E	mitter Leakage Current	$V_{GE} = \pm 20V$		-	-	±250	nA
	Characte	ristics		1				
V _{CE(SAT)}		to Emitter Saturation Voltage	$I_{\rm C} = 12$ A, $T_{\rm J} = 2$	T _J = 25°C	-	2.0	2.5	V
		g-	$V_{GE} = 15V$	$T_1 = 125^{\circ}C$	-	1.7	2.0	V
Q _{G(ON)}	Gate Cha		I _C = 12A, V _{CE} = 300V	V _{GE} = 15V V _{GE} = 20V	-	23 26	29 33	nC nC
V _{GE(TH)} Gate to Emi		mitter Threshold Voltage	I _C = 250μA, V		3.5	4.3	5.0	V
V _{GEP}		mitter Plateau Voltage	$I_{\rm C} = 12$ A, $V_{\rm CE} = 300$ V		-	6.5	8.0	V
	Charact							
SSOA	Switching	SOA	$T_J = 150^{\circ}C, R_G = 10\Omega, V_{GE} = 15V, L = 100\mu$ H, V _{CE} = 600V		60	-	-	A
t _{d(ON)} I	Current T	urn-On Delay Time	IGBT and Diode at $T_J = 25^{\circ}C$, $I_{CE} = 12A$, $V_{CE} = 390V$, $V_{GE} = 15V$, $R_G = 10\Omega$ $L = 200\mu$ H Test Circuit - Figure 20		-	6	-	ns
t _{rl}	Current R	ise Time			-	10	-	ns
t _{d(OFF)} I	Current T	urn-Off Delay Time			-	40	-	ns
t _{fl}	Current F	all Time			-	53	-	ns
E _{ON1}	Turn-On E	Energy (Note 2)			-	55	-	μJ
E _{ON2}	Turn-On E	Energy (Note 2)			-	110	-	μJ
E _{OFF}		Energy (Note 3)			-	100	150	μJ
t _{d(ON)} I		urn-On Delay Time	$\begin{array}{l} \text{IGBT and Diode at } \text{T}_{\text{J}} = 125^{\circ}\text{C} \\ \text{I}_{\text{CE}} = 12\text{A}, \\ \text{V}_{\text{CE}} = 390\text{V}, \\ \text{V}_{\text{GE}} = 15\text{V}, \\ \text{R}_{\text{G}} = 15\text{V}, \\ \text{R}_{\text{G}} = 10\Omega \\ \text{L} = 200\mu\text{H} \\ \text{Test Circuit - Figure } 20 \end{array}$		-	11	-	ns
t _{rl}	Current R				-	17	-	ns
t _{d(OFF)} I	Current T	urn-Off Delay Time			-	73	100	ns
t _{fl}	Current F				-	90	100	ns
E _{ON1}		Energy (Note 2)			-	55	-	μJ
E _{ON2}		Energy (Note 2)			-	160	200	μJ
E _{OFF}	Turn-Off E	Energy (Note 3)			-	250	350	μJ
nermal C	haracter	istics						
R_{\thetaJC}	Thermal I				1	1	1	°C/V

2. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E_{ON1} is the turn-on loss of the IGBT only. E_{ON2} is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T_J as the IGBT. The diode type is specified in figure 20.


3. Turn-Off Energy Loss (E_{OFF}) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I_{CE} = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.

©2003 Fairchild Semiconductor Corporation


FGH30N6S2 / FGP30N6S2 / FGS30N6S2


FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A1

FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A1

FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A1

FGH30N6S2 / FGP30N6S2 / FGS30N6S2 Rev. A1

Handling Precautions for IGBTs

Insulated Gate Bipolar Transistors are susceptible to gate-insulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler's body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBTs are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBTs can be handled safely if the following basic precautions are taken:

- Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as "ECCOSORBD™ LD26" or equivalent.
- 2. When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means for example, with a metallic wristband.
- 3. Tips of soldering irons should be grounded.
- 4. Devices should never be inserted into or removed from circuits with power on.
- Gate Voltage Rating Never exceed the gatevoltage rating of V_{GEM}. Exceeding the rated V_{GE} can result in permanent damage to the oxide layer in the gate region.
- 6. Gate Termination The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup.
- 7. Gate Protection These devices do not have an internal monolithic Zener diode from gate to emitter. If gate protection is required an external Zener is recommended.

Operating Frequency Information

Operating frequency information for a typical device (Figure 3) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 5, 6, 7, 8, 9 and 11. The operating frequency plot (Figure 3) of a typical device shows f_{MAX1} or f_{MAX2} ; whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

 f_{MAX1} is defined by $f_{MAX1} = 0.05/(t_{d(OFF)I} + t_{d(ON)I})$. Deadtime (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible. $t_{d(OFF)I}$ and $t_{d(ON)I}$ are defined in Figure 21. Device turn-off delay can establish an additional frequency limiting condition for an application other than T_{JM} . $t_{d(OFF)I}$ is important when controlling output ripple under a lightly loaded condition.

 f_{MAX2} is defined by $f_{MAX2} = (P_D - P_C)/(E_{OFF} + E_{ON2})$. The allowable dissipation (P_D) is defined by $P_D = (T_{JM} - T_C)/R_{\theta JC}$. The sum of device switching and conduction losses must not exceed P_D . A 50% duty factor was used (Figure 3) and the conduction losses (P_C) are approximated by $P_C = (V_{CE} \times I_{CE})/2$.

 E_{ON2} and E_{OFF} are defined in the switching waveforms shown in Figure 21. E_{ON2} is the integral of the instantaneous power loss ($I_{CE} \times V_{CE}$) during turn-on and E_{OFF} is the integral of the instantaneous power loss ($I_{CE} \times V_{CE}$) during turn-off. All tail losses are included in the calculation for E_{OFF} ; i.e., the collector current equals zero ($I_{CE} = 0$)

©2003 Fairchild Semiconductor Corporation

ECCOSORBD™ is a Trademark of Emerson and Cumming, Inc.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	LittleFET™	Power247™	SuperSOT™-6
ActiveArray™	FAST®	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FASTr™	MicroFET™	QFET [®]	SyncFET™
CoolFET™	FRFET™	MicroPak™	QS™	TinyLogic [®]
CROSSVOLT™	GlobalOptoisolator™	MICROWIRE™	QT Optoelectronics [™]	TINYOPTO™
DOME™	GTO™່	MSX™	Quiet Series [™]	TruTranslation™
EcoSPARK™	HiSeC™	MSXPro™	RapidConfigure™	UHC™
E ² CMOS [™]	I ² C [™]	OCX™	RapidConnect™	UltraFET [®]
EnSigna™	ImpliedDisconnect™	OCXPro™	SILENT SWITCHER®	VCX™
FACT™	ISOPLANAR™	OPTOLOGIC[®]	SMART START™	
Across the boar	d. Around the world.™	OPTOPLANAR™	SPM™	
The Power Fran		PACMAN™	Stealth™	
Programmable A		POP™	SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production

ООО «**НИОКРсистемс**» - ЭТО ОПЕРАТИВНЫЕ ПОСТАВКИ ШИРОКОГО СПЕКТРА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ ОТЕЧЕСТВЕННОГО И ИМПОРТНОГО ПРОИЗВОДСТВА НАПРЯМУЮ ОТ ПРОИЗВОДИТЕЛЕЙ И С КРУПНЕЙШИХ МИРОВЫХ СКЛАДОВ. Реализуемая нашей компанией продукция насчитывает более полумиллиона наименований.

Благодаря этому наша компания предлагает к поставке практически не ограниченный ассортимент компонентов как оптовыми, мелкооптовыми партиями, так и в розницу.

Благодаря развитой сети поставщиков, помогаем в поиске и приобретении экзотичных или снятых с производства компонентов.

Наша компания это:

- Гарантия качества поставляемой продукции
- Широкий ассортимент
- Минимальные сроки поставок
- Техническая поддержка
- Подбор комплектации
- Индивидуальный подход
- Гибкое ценообразование
- Работаем по 275 ФЗ

Телефон: 8 (495) 268-14-82 Email: n@nsistems.ru ИНН: 7735154786 ОГРН: 1167746717709