

Product Specification PE42421

SPDT UltraCMOS[®] 10 MHz – 3.0 GHz RF Switch

Features

- Single-pin or complementary CMOS logic control inputs
- Low insertion loss: 0.35 dB at 1000 MHz, 0.5 dB at 2000 MHz
- Isolation of 30 dB at 1000 MHz, 20 dB at 2000 MHz
- Typical input 1 dB compression point of +33.5 dBm
- 1.8V minimum power supply voltage
- SC-70 package

Figure 1. Functional Diagram

Figure 2. Package 6-lead SC-70

on-board CMOS control logic with a low voltage CMOS-compatible control interface, and can be controlled using either single-pin or complementary

control inputs. Using a nominal +3-volt power supply

The PE42421 UltraCMOS[®] RF switch is designed to

cover a broad range of applications from 10 MHz through 3000 MHz. This reflective switch integrates

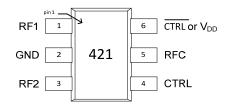
voltage, a typical input 1 dB compression point of +33.5 dBm can be achieved.

Product Description

The PE42421 SPDT RF switch is manufactured on Peregrine's UltraCMOS[®] process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

Table 1. Electrical Specifications @ +25°C, V_{DD} = 3V (Z_S = Z_L = 50 Ω)

Parameter	Condition	Minimum	Typical	Maximum	Unit
Operation Frequency ¹		10 MHz		3000	MHz
Insertion Loss ³	1000 MHz 2000 MHz		0.35 0.50	0.45 0.60	dB dB
Isolation	1000 MHz 2000 MHz	29 19	30 20		dB dB
Return Loss ³	1000 MHz 2000 MHz	21 24	22 27		dB dB
'ON' Switching Time	50% CTRL to 0.1 dB of final value, 1 GHz		1.50		us
'OFF' Switching Time	50% CTRL to 25 dB isolation, 1 GHz		1.50		us
Video Feedthrough ²			15		$\mathrm{mV}_{\mathrm{pp}}$
Input 1 dB Compression	1000 MHz @ 2.3 - 3.3V 1000 MHz @ 1.8 - 2.3V 2500 MHz @ 2.3 - 3.3V 2500 MHz @ 1.8 - 2.3V	31.5 29.5 28.5 28	33.5 30.5 30.5 29		dBm
Input IP3	1000 MHz, 20dBm input power		55		dBm


Notes: 1. Device linearity will begin to degrade below 10 MHz

2. The DC transient at the output of any port of the switch when the control voltage is switched from Low to High or High to Low in a 50Ω test set-up, measured with 1ns risetime pulses and 500 MHz bandwidth

3. A tuning capacitor must be added to the application board to optimize the insertion loss and return loss performance. See Figure 6 for details

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin No.	Pin Name	Description
1	RF1 ⁴	RF Port1
2	GND	Ground connection. Traces should be physically short and connected to ground plane for best performance.
3	RF2 ⁴	RF Port2
4	CTRL	Switch control input, CMOS logic level.
5	RFC ⁴	RF Common
6		This pin supports two interface options: Single-pin control mode. A nominal 3-volt supply connection is required. Complementary-pin control mode. A com- plementary CMOS control signal to CTRL is supplied to this pin. Bypassing on this pin is not required in this mode.

Note: 4. All RF pins must be DC blocked with an external series capacitor or held at 0 $\rm V_{\rm DC}$

Table 3. Operating Ranges

Parameter	Min	Тур	Max	Unit
V _{DD} Power Supply Voltage	1.8	3.0	3.3	V
$ I_{DD} \text{ Power Supply Current} \\ (V_{DD} = 3V, V_{CNTL} = 3V) $		9	20	μA
Control Voltage High	$0.7 \mathrm{x} \mathrm{V}_{\mathrm{DD}}$			V
Control Voltage Low			$0.3 \mathrm{x} \mathrm{V}_{\mathrm{DD}}$	V

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE42421 in the SC70 package is MSL1.

Switching Frequency

The PE42421 has a maximum 25 kHz switching rate.

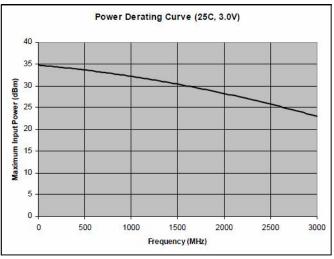

Symbol	Parameter/Condition	Min	Мах	Unit
V _{DD}	Power supply voltage	-0.3	4.0	V
Vı	Voltage on any DC input	ge on any DC input -0.3 V _{DD} + 0.3		v
T _{ST}	Storage temperature range	nperature range -65 150		°C
T _{OP}	Operating temperature range	nperature -40 85		°C
P _{IN}	Input power (50 Ω)		+345	dBm
V _{ESD}	ESD Voltage (HBM, ML_STD 883 Method 3015.7)		2000	v
	ESD Voltage (MM, JEDEC, JESD22-A114-B)		100	V

Table 4. Absolute Maximum Ratings

Notes: 5. To maintain optimum device performance, do not exceed Max P_{IN} at desired operating frequency (see *Figure 4*)

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Figure 4. Maximum Input Power

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS[®] devices are immune to latch-up.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS[®] device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

©2010-2013 Peregrine Semiconductor Corp. All rights reserved.

Table 5. Single-pin Control Logic Truth Table

Control Voltages	Signal Path
Pin 6 (V_{DD}) = V_{DD} Pin 4 (CTRL) = High	RFC to RF2
Pin 6 (V_{DD}) = V_{DD} Pin 4 (CTRL) = Low	RFC to RF1

Table 6. Complementary-pin Control Logic Truth Table

Control Voltages	Signal Path
Pin 6 ($\overline{\text{CTRL}}$ or V_{DD}) = Low Pin 4 (CTRL) = High	RFC to RF2
Pin 6 ($\overline{\text{CTRL}}$ or V_{DD}) = High Pin 4 (CTRL) = Low	RFC to RF1

Control Logic Input

The PE42421 is a versatile RF CMOS switch that supports two operating control modes; single-pin control mode and complementary-pin control mode.

Single-pin control mode enables the switch to operate with a single control pin (pin 4) supporting a +3-volt CMOS logic input, and requires a dedicated +3-volt power supply connection on pin 6 (V_{DD}). This mode of operation reduces the number of control lines required and simplifies the switch control interface typically derived from a CMOS µProcessor I/O port.

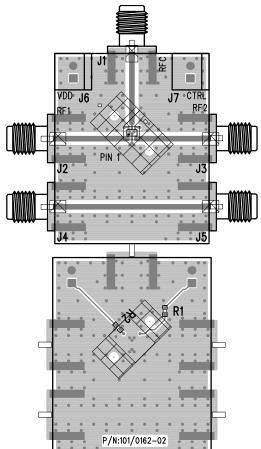
Complementary-pin control mode allows the switch to operate using complementary control pins CTRL and CTRL (pins 4 & 6), that can be directly driven by +3-volt CMOS logic or a suitable μ Processor I/O port. This enables the PE42421 to be used as a potential alternate source for SPDT RF switch products used in positive control voltage mode and operating within the PE42421 operating limits.

Evaluation Kit

The SPDT switch EK Board was designed to ease customer evaluation of Peregrine's PE42421. The RF common port is connected through a 50 Ω transmission line via the top SMA connector, J1. RF1 and RF2 are connected through 50 Ω transmission lines via SMA connectors J2 and J3, respectively. A through 50 Ω transmission is available via SMA connectors J4 and J5. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.

The board is constructed of a two metal layer FR4 material with a total thickness of 0.031". The bottom layer provides ground for the RF transmission lines. The transmission lines were designed using a coplanar waveguide with ground plane model using a trace width of 0.0476", trace gaps of 0.030", dielectric thickness of 0.028", metal thickness of 0.0021" and ε_r of 4.4.

J6 and J7 provide a means for controlling DC and digital inputs to the <u>device</u>. J6-1 is connected to the device V_{DD} or CTRL input. J7-1 is connected to the device CTRL input.


Figure 6. Evaluation Board Schematic

Peregrine Specification 102-0756-01

J4 N/A T-line Description --Model = CPWG H = 28 mils T = 2.1 mils W = 47 mils G = 30 mils Er = 4.4 General Comments Transmission lines connected to J1, J2, and J3 should have exactly the same electrical length = 4.4 The path from J2 to J3 including the distance through the part should have the same length as J4 and J5 and be in parallel to J4 to J5 R2 1 K Ohm U1 PE42421/SC70-6 CTRI RE 2 J1 RFC RFC GND RF 1 C1 0.5pF SEEASSYNOTE 2 R1 1 K Ohm Notes: Add two 0.5 pF caps in series to be shunted on the J1 SMA input C2 0.5pF Solder C1 side 1 to the RF trace close to the J1 pin SEEASSYNOTE 2 Solder C1 side 2 to C2 side 1 Solder C2 side 2 to ground **CNTLX/VDD** Document No. 70-0396-03 www.psemi.com ©2010-2013 Peregrine Semiconductor Corp. All rights reserved.

Figure 5. Evaluation Board Layouts

Peregrine Specification 101-0162-02

Typical Performance Data @ -40°C to 85°C (Unless Otherwise Noted)

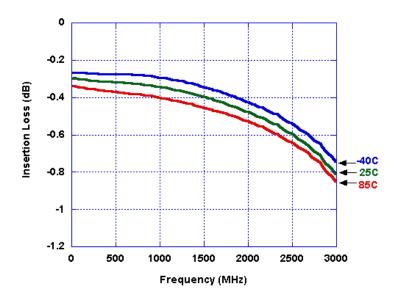


Figure 7. Insertion Loss

Peregrine Semiconductor

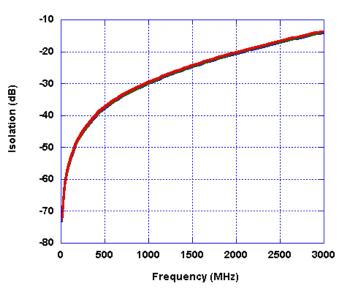


Figure 8. Isolation – Input to Output

Figure 9. Isolation – Output to Output

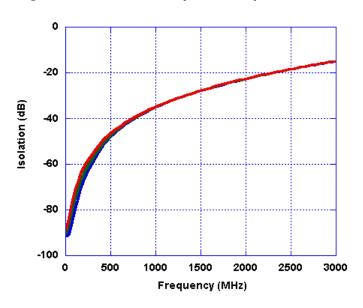
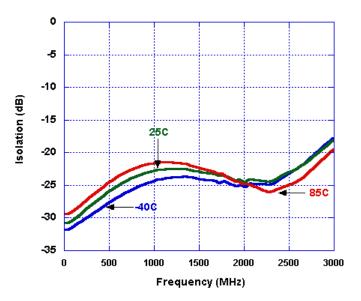



Figure 10. Return Loss (Input)

Typical Performance Data @ V_{DD} = 2.3V, T = 25°C

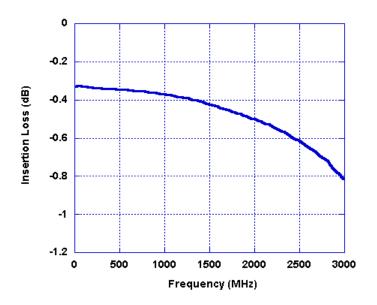


Figure 11. Insertion Loss

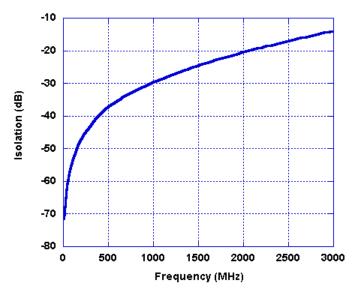


Figure 12. Isolation – Input to Output

Figure 13. Isolation – Output to Output

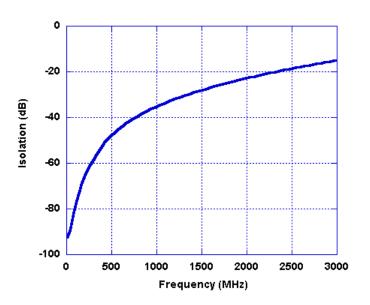
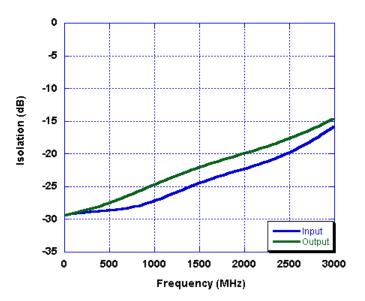



Figure 14. Return Loss (Input & Output)

Figure 15. Package Drawing

6-lead SC-70

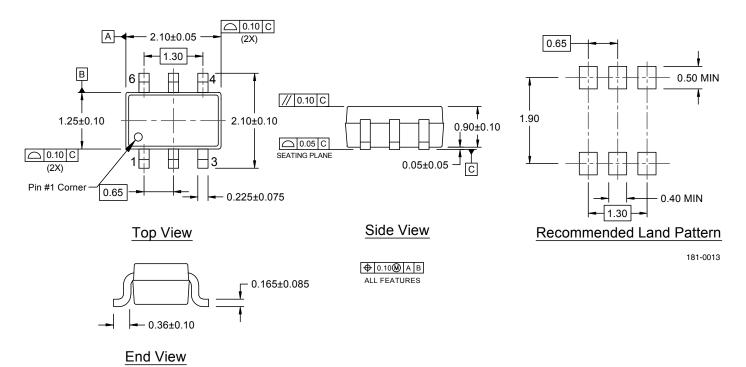
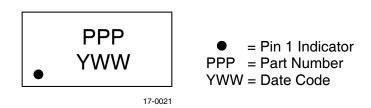
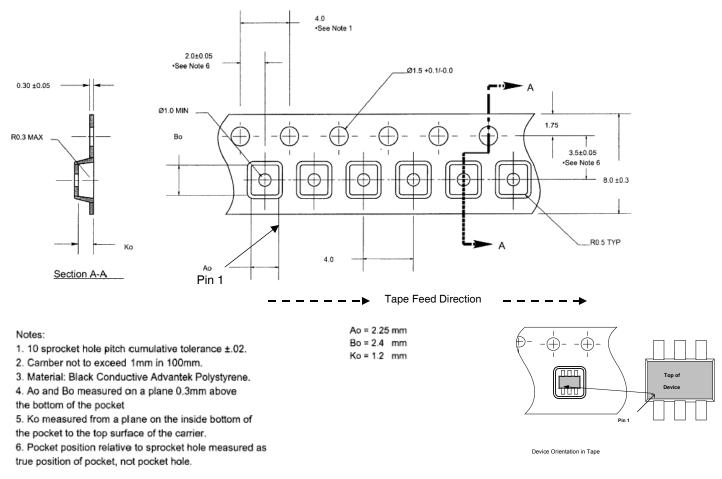




Figure 16. Top Marking Specification

Table 7. Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
EK42421-01	PE42421-EK	PE42421 Evaluation Kit	Evaluation Kit	1 / Box
PE42421SCAA-Z	421	PE42421 SPDT RF Switch	Green 6-lead SC-70	3000 units / T&R

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

<u>Advance Information</u>: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. <u>Preliminary Specification</u>: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. <u>Product Specification</u>: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.

©2010-2013 Peregrine Semiconductor Corp. All rights reserved.

ООО «**НИОКРсистемс**» - ЭТО ОПЕРАТИВНЫЕ ПОСТАВКИ ШИРОКОГО СПЕКТРА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ ОТЕЧЕСТВЕННОГО И ИМПОРТНОГО ПРОИЗВОДСТВА НАПРЯМУЮ ОТ ПРОИЗВОДИТЕЛЕЙ И С КРУПНЕЙШИХ МИРОВЫХ СКЛАДОВ. Реализуемая нашей компанией продукция насчитывает более полумиллиона наименований.

Благодаря этому наша компания предлагает к поставке практически не ограниченный ассортимент компонентов как оптовыми, мелкооптовыми партиями, так и в розницу.

Благодаря развитой сети поставщиков, помогаем в поиске и приобретении экзотичных или снятых с производства компонентов.

Наша компания это:

- Гарантия качества поставляемой продукции
- Широкий ассортимент
- Минимальные сроки поставок
- Техническая поддержка
- Подбор комплектации
- Индивидуальный подход
- Гибкое ценообразование
- Работаем по 275 ФЗ

Телефон: 8 (495) 268-14-82 Email: n@nsistems.ru ИНН: 7735154786 ОГРН: 1167746717709