Features

- Programmable 4,194,304 x 1 and 8,388,608 x 1-bit Serial Memories Designed to Store Configuration Programs for Field Programmable Gate Arrays (FPGAs)
- 3.3V Output Capability
- 5V Tolerant I/O Pins
- Program Support using the Atmel ATDH2200E System or Industry Third Party Programmers
- In-System Programmable (ISP) via 2-wire Bus
- Simple Interface to SRAM FPGAs
- Compatible with Atmel AT40K and AT94K Devices, Altera FLEX[®], Excalibur, Stratix, Cyclone and APEX[™] Devices
- Cascadable Read-back to Support Additional Configurations or Higher-density Arrays
- Low-power CMOS FLASH Process
- Available in 20-lead PLCC and 32-lead TQFP Packages
- Emulation of Atmel's AT24CXXX Serial EEPROMs
- Low-power Standby Mode
- Single Device Capable of Holding 4 Bit Stream Files Allowing Simple System Reconfiguration
- Fast Serial Download Speeds up to 33 MHz
- Endurance: 5,000 Write Cycles Typical
- LHF Package Available (Lead and Halide Free)

Description

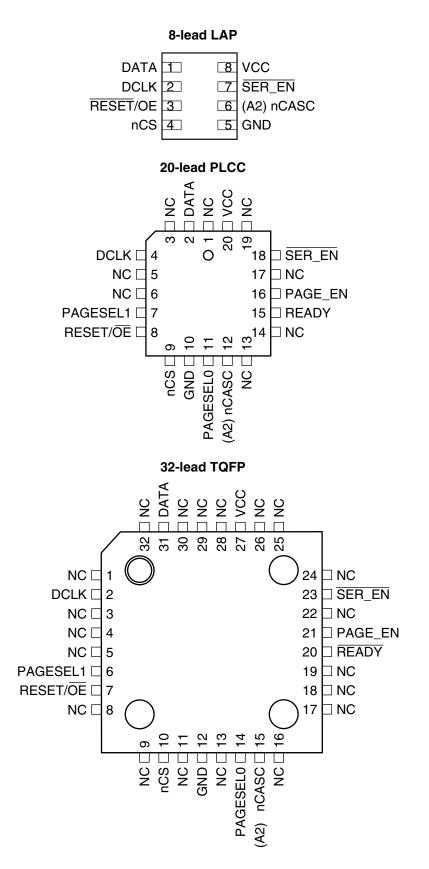
The AT17FxxxA Series of In-System Programmable Configuration PROMs (Configurators) provide an easy-to-use, cost-effective configuration memory for Field Programmable Gate Arrays. The AT17FxxxA Series device is packaged in the 20-lead PLCC and 32-lead TQFP, see Table 1. The AT17FxxxA Series Configurator uses a simple serial-access procedure to configure one or more FPGA devices.

The AT17FxxxA Series Configurators can be programmed with industry-standard programmers, Atmel's ATDH2200E Programming Kit or Atmel's ATDH2225 ISP Cable.

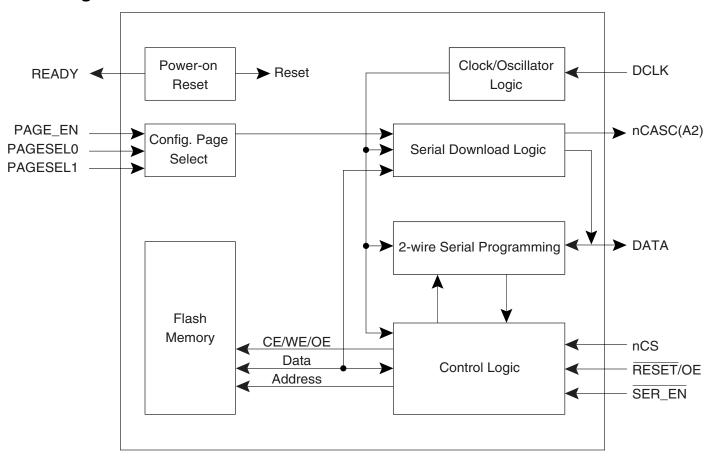
Table 1. AT17FxxxA Series Packages

Package	AT17F040A	AT17F080A
8-lead LAP	Yes	Yes
20-lead PLCC	Yes	Yes
32-lead TQFP	Yes	Yes

FPGA Configuration Flash Memory


AT17F040A AT17F080A

2823B-CNFG-7/04



Pin Configuration

2 AT17F040A/080A

Block Diagram

Device Description

The control signals for the configuration memory device (nCS, RESET/OE and DCLK) interface directly with the FPGA device control signals. All FPGA devices can control the entire configuration process and retrieve data from the configuration device without requiring an external intelligent controller.

The RESET/OE and nCS pins control the tri-state buffer on the DATA output pin and enable the address counter. When RESET/OE is driven Low, the configuration device resets its address counter and tri-states its DATA pin. The nCS pin also controls the output of the AT17FxxxA Series Configurator. If nCS is held High after the RESET/OE reset pulse, the counter is disabled and the DATA output pin is tri-stated. When OE is subsequently driven High, the counter and the DATA output pin are enabled. When RESET/OE is driven Low again, the address counter is reset and the DATA output pin is tri-stated, regardless of the state of nCS.

When the configurator has driven out all of its data and nCASC is driven Low, the device tri-states the DATA pin to avoid contention with other configurators. Upon power-up, the address counter is automatically reset.

Pin Description

		AT17F04	0A/080A
Name	I/O	20 PLCC	32 TQFP
DATA	I/O	2	31
DCLK	I	4	2
PAGE_EN	I	16	21
PAGESEL0	I	11	14
PAGESEL1	I	7	6
RESET/OE	I	8	7
nCS	I	9	10
GND	_	10	12
nCASC	0	10	15
A2	I	12	15
READY	0	15	20
SER_EN	I	18	23
V _{CC}	-	20	27

DATA⁽¹⁾ Three-state DATA output for FPGA configuration. Open-collector bi-directional pin for configuration programming.

DCLK⁽¹⁾ Three-state clock. Functions as an input when the Configurator is in programming mode (i.e. SER_EN is Low) and as an output during FPGA configuration.

PAGE_EN⁽²⁾

Input used to enable page download mode. When PAGE_EN is high the configuration download address space is partitioned into 4 equal pages. This gives users the ability to easily store and retrieve multiple configuration bitstreams from a single configuration device. This input works in conjunction with the PAGESEL inputs. PAGE_EN must be remain low if paging is not desired. When SER_EN is Low (ISP mode) this pin has no effect.

Notes: 1. This pin has an internal 20 K Ω pull-up resistor.

2. This pin has an internal 30 K Ω pull-down resistor.

4 AT17F040A/080A

2823B-CNFG-7/04

PAGESEL[1:0]⁽²⁾

Page select inputs. Used to determine which of the 4 memory pages are targeted during a serial configuration download. The address space for each of the pages is shown in Table 2. When SER_EN is Low (ISP mode) these pins have no effect.

Table 2.	Address Space
----------	---------------

Paging Decodes	AT17F040A (4 Mbits)	AT17F080A (8 Mbits)
PAGESEL = 00, PAGE_EN = 1	00000 – 0FFFFh	00000 – 1FFFFh
PAGESEL = 01, PAGE_EN = 1	10000 – 1FFFFh	20000 – 3FFFFh
PAGESEL = 10, PAGE_EN = 1	20000 – 2FFFFh	40000 – 5FFFFh
PAGESEL = 11, PAGE_EN = 1	30000 – 3FFFFh	60000 – 7FFFFh
PAGESEL = XX, PAGE_EN = 0	00000 – 3FFFFh	00000 – 7FFFFh

RESET/OE⁽¹⁾

Output Enable (active High) and RESET (active Low) when SER_EN is High. A Low level on RESET/OE resets both the address and bit counters. A High level (with nCS Low) enables the data output driver.

- **nCS**⁽¹⁾ Chip Enable input (active Low). A Low level (with OE High) allows DCLK to increment the address counter and enables the data output driver. A High level on nCS disables both the address and bit counters and forces the device into a low-power standby mode. Note that this pin will *not* enable/disable the device in the 2-wire Serial Programming mode (SER_EN Low).
- **GND** Ground pin. A 0.2 µF decoupling capacitor between V_{CC} and GND is recommended.
- **nCASC** Cascade Select Output (when SER_EN is High). This output goes Low when the internal address counter has reached its maximum value. If the PAGE_EN input is set High, the maximum value is the highest address in the selected partition. The PAGESEL[1:0] inputs are used to make the 4 partition selections. If the PAGE_EN input is set Low, the device is not partitioned and the address maximum value is the highest address in the device, see Table 2 on page 5. In a daisy chain of AT17FxxxA Series devices, the nCASC pin of one device must be connected to the nCS input of the next device in the chain. It will stay Low as long as nCS is Low and OE is High. It will then follow nCS until OE goes Low; thereafter, nCASC will stay High until the entire EEPROM is read again.
- A2⁽¹⁾ Device selection input, (when SER_EN Low). The input is used to enable (or chip select) the device during programming (i.e., when SER_EN is Low). Refer to the AT17FxxxA Programming Specification available on the Atmel web site for additional details.
- **READY**Open collector reset state indicator. Driven Low during power-up reset, released when
power-up is complete. (recommended 4.7 kΩ pull-up on this pin if used).
- **SER_EN**⁽¹⁾ The serial enable input must remain High during FPGA configuration operations. Bringing SER_EN Low enables the 2-Wire Serial Programming Mode. For non-ISP applications, SER_EN should be tied to V_{CC}.

V _{cc}	+3.3V (±1

- Notes: 1. This pin has an internal 20 K Ω pull-up resistor.
 - 2. This pin has an internal 30 K Ω pull-down resistor.

0%).

	r
	R)

FPGA Master Serial The I/O and logic functions of any SRAM-based FPGA are established by a configuration program. The program is loaded either automatically upon power-up, or on Mode Summary command, depending on the state of the FPGA mode pins. In Master mode, the FPGA automatically loads the configuration program from an external memory. The AT17FxxxA Serial Configuration PROM has been designed for compatibility with the Master Serial mode. This document discusses the Atmel AT40K, AT40KAL and AT94KAL applications as well as Altera applications. Control of Most connections between the FPGA device and the AT17FxxxA Serial Configurator PROM are simple and self-explanatory. Configuration The DATA output of the AT17FxxxA Series Configurator drives DIN of the FPGA devices. The DCLK output of the AT17FxxxA device drives the DCLK input data of the FPGA. • The nCASC output of a AT17FxxxA Series Configurator drives the nCS input of the next Configurator in a cascade chain of configurator devices. SER_EN must be at logic High level (internal pull-up resistor provided) except during ISP. The READY pin is available as an open-collector indicator of the device's reset status; it is driven Low while the device is in its power-on reset cycle and released (tri-stated) when the cycle is complete. PAGE_EN must REMAIN Low if download paging is not desired. If paging is desired, PAGE_EN must be High and the PAGESEL pins must be set to High or Low such that the desired page is selected, see Table 2 on page 5. **Cascading Serial** For multiple FPGAs configured as a daisy-chain, or for FPGAs requiring larger configuration memories, cascaded configurators provide additional memory. Configuration After the last bit from the first configurator is read, the clock signal to the configurator **Devices** asserts its nCASC output Low and disables its DATA line driver. The second configurator recognizes the Low level on its nCS input and enables its DATA output. After configuration is complete, the address counters of all cascaded configurators are reset if the RESET/OE on each configurator is driven to its active (Low) level. If the address counters are not to be reset upon completion, then the RESET/OE input can be tied to its inactive (High) level. **Programming Mode** The programming mode is entered by bringing SER_EN Low. In this mode the chip can be programmed by the 2-wire serial bus. The programming is done at V_{CC} supply only. Programming super voltages are generated inside the chip. The AT17FxxxA parts are read/write at 3.3V nominal. Refer to the AT17FxxxA Programming Specification available on the Atmel web site (www.atmel.com) for more programming details. AT17FxxxA devices are supported by the Atmel ATDH2200 programming system along with many third party programmers. Standby Mode The AT17FxxxA Series Configurators enter a low-power standby mode whenever SER_EN is High and nCS is asserted High. In this mode, the AT17FxxxA Configurator typically consumes less than 1 mA of current at 3.3V. The output remains in a highimpedance state regardless of the state of the OE input.

6 AT17F040A/080A

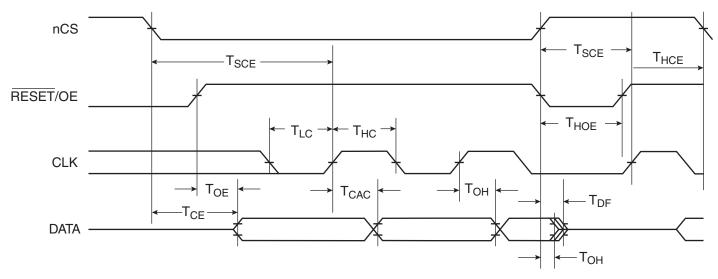
Absolute Maximum Ratings*

Operating Temperature40°C to +85°C
Storage Temperature65 °C to +150 °C
Voltage on Any Pin with Respect to Ground0.5V to $\rm V_{\rm CC}$ +0.5V
Supply Voltage (V $_{\rm CC}$)0.5V to +4.0V
Maximum Soldering Temp. (10 sec. @ 1/16 in.)260°C
ESD (R _{ZAP} = 1.5K, C _{ZAP} = 100 pF)

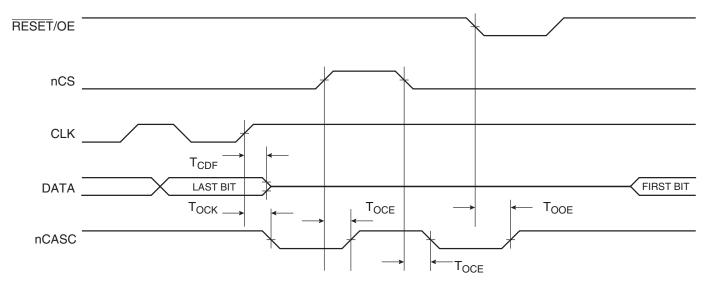
*NOTICE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those listed under operating conditions is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

Operating Conditions

		AT17FxxxA Series Configurator			
Symbol	Description		Min	Max	Units
N	Commercial	Supply voltage relative to GND -0°C to +70°C	2.97	3.63	V
V _{cc}	Industrial	Supply voltage relative to GND -40°C to +85°C	2.97	3.63	V


DC Characteristics

			AT17	F040A	AT17	F080A	
Symbol	Description		Min	Max	Min	Max	Units
V _{IH}	High-level Input Voltage		2.0	V _{CC}	2.0	V _{cc}	V
V _{IL}	Low-level Input Voltage		0	0.8	0	0.8	V
V _{OH}	High-level Output Voltage (I _{OH} = -2.5 mA)	Commercial	2.4		2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Commercial		0.4		0.4	V
V _{OH}	High-level Output Voltage (I _{OH} = -2 mA)	la du atrial	2.4		2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Industrial		0.4		0.4	V
I _{CCA}	Supply Current, Active Mode at Freq. Max.	•		50		50	mA
I _L	Input or Output Leakage Current ($V_{IN} = V_{CC}$	₂ or GND)	-10	10	-10	10	μA
	Cumply Current Ctendley Mede	Commercial		3		3	mA
I _{CCS}	Supply Current, Standby Mode Industrial			3		3	mA



AC Characteristics

AC Characteristics when Cascading

AC Characteristics

			AT17	F040A	AT17F080A		
Symbol	Description		Min	Мах	Min	Мах	Units
T (2)		Commercial		50		50	ns
$T_{OE}^{(2)}$	OE to Data Delay	Industrial ⁽¹⁾		55		55	ns
T (2)	a OO ta Data Dalari	Commercial		55		55	ns
$T_{CE}^{(2)}$	nCS to Data Delay	Industrial ⁽¹⁾		60		60	ns
T (2)		Commercial		30		30	ns
$T_{CAC}^{(2)}$	DCLK to Data Delay	Industrial ⁽¹⁾		30		30	ns
-	Data Hold from pCS_OE_or DCI K	Commercial	0		0		ns
Т _{ОН}	Data Hold from nCS, OE, or DCLK	Industrial ⁽¹⁾	0		0		ns
T (3)		Commercial		15		15	ns
$T_{DF}^{(3)}$	nCS or OE to Data Float Delay	Industrial ⁽¹⁾		15		15	ns
-	T _{LC} DCLK Low Time	Commercial	15		15		ns
LC		Industrial ⁽¹⁾	15		15		ns
-	HC DCLK High Time	Commercial	15		15		ns
T _{HC}		Industrial ⁽¹⁾	15		15		ns
-	nCS Setup Time to DCLK	Commercial	20		20		ns
T _{SCE}	(to guarantee proper counting)	Industrial ⁽¹⁾	25		25		ns
-	nCS Hold Time from DCLK	Commercial	0		0		ns
T _{HCE}	(to guarantee proper counting)	Industrial ⁽¹⁾	0		0		ns
-	Reset/OE Low Time	Commercial	20		20		ns
T _{HOE}	(guarantees counter is reset)	Industrial ⁽¹⁾	20		20		ns
_	Maximum Input Clock Frequency	Commercial		10		10	MHz
F _{MAX}	SEREN = 0	Industrial ⁽¹⁾		10		10	MHz
-	Minite Ociale Time (4)	Commercial		30		30	μs
T _{WR}	Write Cycle Time ⁽⁴⁾	Industrial ⁽¹⁾		30		30	μs
-		Commercial		30		10	μs
T _{EC}	Erase Cycle Time ⁽⁴⁾	Industrial ⁽¹⁾		30		10	μs

Notes: 1. Preliminary specifications for military operating range only.

2. AC test lead = 50 pF.

3. Float delays are measured with 5 pF AC loads. Transition is measured ± 200 mV from steady-state active levels.

4. See the AT17FxxxA Programming Specification for procedural information.

AC Characteristics When Cascading

			AT17F040A		AT17F080A		
Symbol	Description		Min	Max	Min	Max	Units
T (3)	DCLK to Data Float Dalay	Commercial		50		50	ns
T _{CDF} ⁽³⁾	DCLK to Data Float Delay	Industrial		50		50	ns
T (2)		Commercial		50		50	ns
Т _{ОСК} ⁽²⁾	DCLK to nCASC Delay	Industrial		55		55	ns
T (2)		Commercial		35		35	ns
T _{OCE} ⁽²⁾	nCS to nCASC Delay	Industrial		40		40	ns
T (2)		Commercial		35		35	ns
T _{OOE} ⁽²⁾	RESET/OE to nCASC Delay	Industrial		25		35	ns

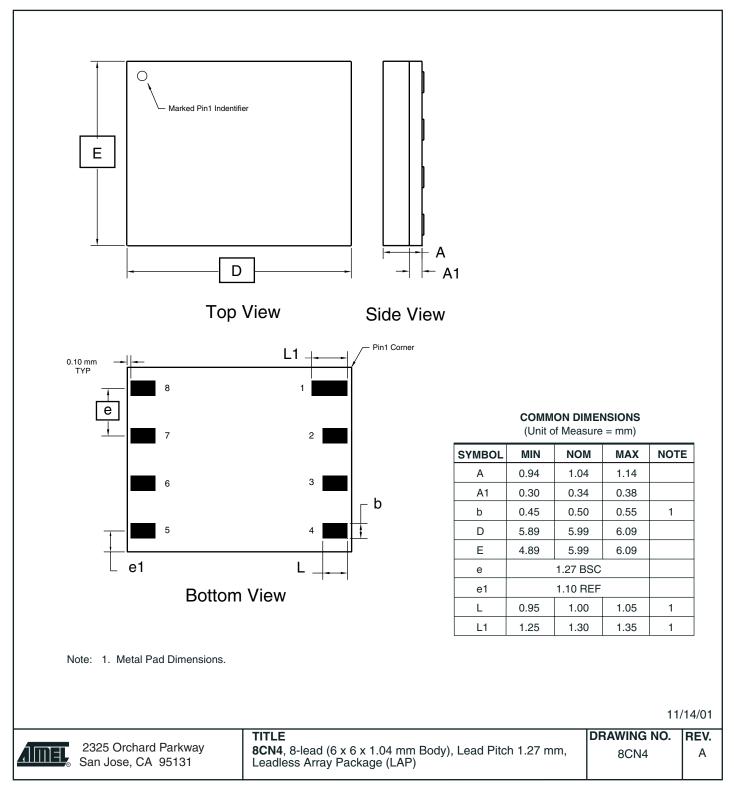
Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured \pm 200 mV from steady-state active levels.

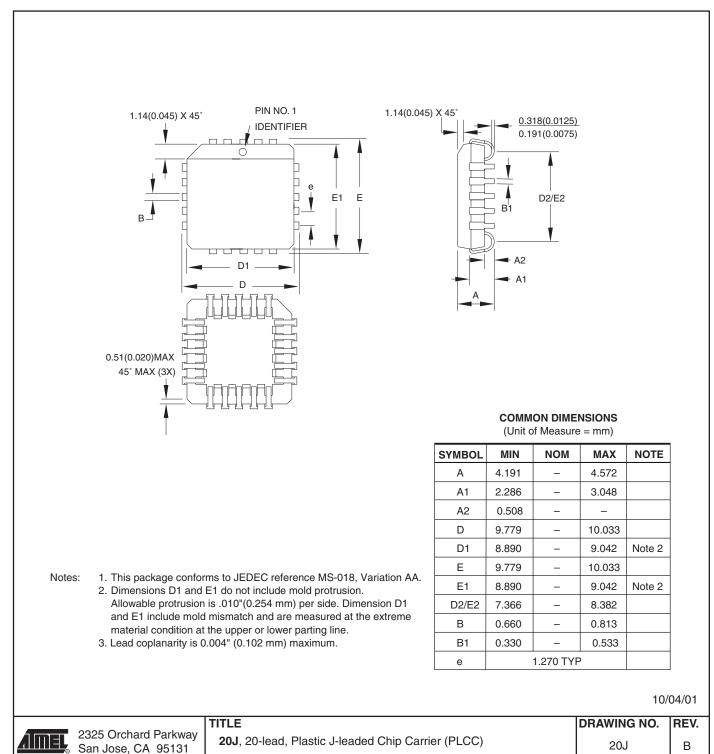
Thermal Resistance Coefficients

Package Type		AT17F040A	AT17F080A	
201	Plastic Looded Chip Corrier (PLCC)	θ _{JC} [°C/W]		-
20J Plastic Leaded Chip Carrier (PLCC)		$\theta_{JA} [^{\circ}C/W]^{(1)}$		-
00.4	This Plactic Qued Flat Package (TOFP)	θ _{JC} [°C/W]	17	17
32A	Thin Plastic Quad Flat Package (TQFP)	θ _{JA} [°C/W] ⁽¹⁾	62	62

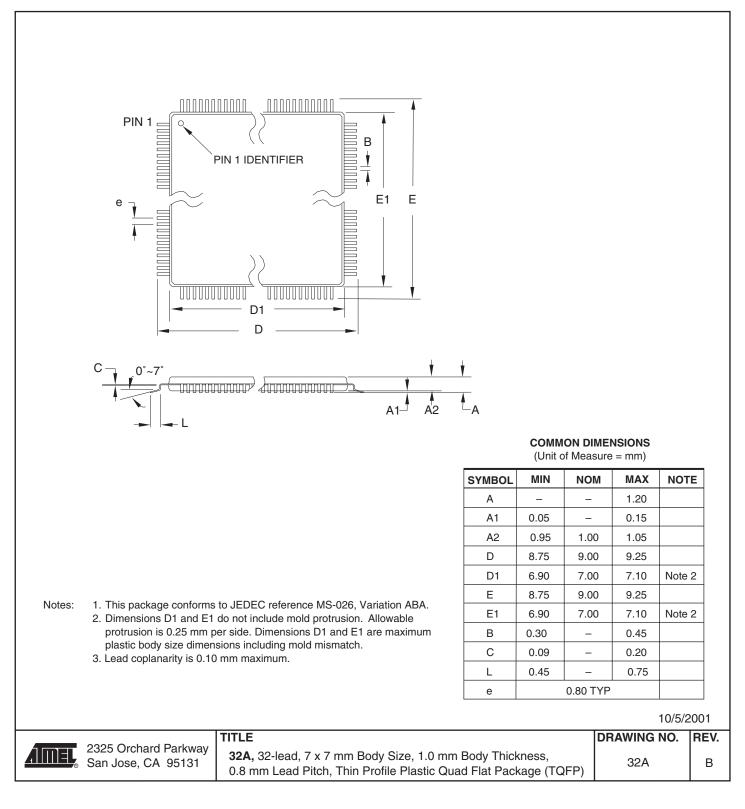
Note: 1. Airflow = 0 ft/min.


Ordering Information

Memory Size	Ordering Code	Package	Operation Range
4-Mbit	AT17F040A-30JC AT17F040A-30QC	20J - 20 PLCC 32A - 32 TQFP	Commercial (0°C to 70°C)
	AT17F040A-30JI AT17F040A-30QI	20J - 20 PLCC 32A - 32 TQFP	Industrial (-40°C to 85°C)
4-Mbit	AT17F040A-30CU AT17F040A-30JU	8CN4 -8 LAP 20J - 20 PLCC	LHF Industrial (-40°C to 85°C
8-Mbit	AT17F080A-30JC AT17F080A-30QC	20J - 20 PLCC 32A - 32 TQFP	Commercial (0°C to 70°C)
	AT17F080A-30JI AT17F080A-30QC	20J - 20 PLCC 32A - 32 TQFP	Industrial (-40°C to 85°C)
8-Mbit	AT17F080A-30CU AT17F080A-30JU	8CN4 -8 LAP 20J - 20 PLCC	LHF Industrial (-40°C to 85°C


Package Type			
8CN4	8-lead, 6 mm x 6 mm x 1 mm, Leadless Array Package (LAP) - Pin-compatible with 8-lead SOIC/VOIC Packages		
20J	20-lead, Plastic J-leaded Chip Carrier (PLCC)		
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package Carrier (TQFP)		

Packaging Information


8CN4 – LAP

32A – TQFP

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

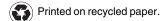
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Atmel Programmable SLI Hotline (408) 436-4119


Atmel Programmable SLI e-mail configurator@atmel.com

FAQ

Available on web site

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use

© Atmel Corporation 2004. All rights reserved. Atmel[®] and combinations thereof, are the registered trademarks of Atmel Corporation or its subsidiaries. FLEX[™] is the trademarks of Altera Corporation. ORCA[™] is the trademark of Lucent Technologies, Inc. SPARTAN[®] and Virtex[®] are the registered trademarks, and XC3000[™], XC4000[™] and XC5200[™] are the trademarks of Xilinx, Inc. APEX[™] is the trademark of MIPS Technologies. Other terms and product names may be the trademarks of others.

ООО «**НИОКРсистемс**» - ЭТО ОПЕРАТИВНЫЕ ПОСТАВКИ ШИРОКОГО СПЕКТРА ЭЛЕКТРОННЫХ КОМПОНЕНТОВ ОТЕЧЕСТВЕННОГО И ИМПОРТНОГО ПРОИЗВОДСТВА НАПРЯМУЮ ОТ ПРОИЗВОДИТЕЛЕЙ И С КРУПНЕЙШИХ МИРОВЫХ СКЛАДОВ. Реализуемая нашей компанией продукция насчитывает более полумиллиона наименований.

Благодаря этому наша компания предлагает к поставке практически не ограниченный ассортимент компонентов как оптовыми, мелкооптовыми партиями, так и в розницу.

Благодаря развитой сети поставщиков, помогаем в поиске и приобретении экзотичных или снятых с производства компонентов.

Наша компания это:

- Гарантия качества поставляемой продукции
- Широкий ассортимент
- Минимальные сроки поставок
- Техническая поддержка
- Подбор комплектации
- Индивидуальный подход
- Гибкое ценообразование
- Работаем по 275 ФЗ

Телефон: 8 (495) 268-14-82 Email: n@nsistems.ru ИНН: 7735154786 ОГРН: 1167746717709